袁松虎
首页 > 人才培养 > 导师名单 > 正文

袁松虎 男,汉族,1979年生,教授/博士生导师,国家优秀青年基金获得者,入选教育部新世纪优秀人才支持计划,现为“江汉平原地下水环境”研究组负责人。主要从事地下环境水文地球化学过程与修复研究,主要研究兴趣包括:(1)地下水环境中活性氧(超氧、过氧化氢、羟自由基)的分布规律、水文/生物地球化学产生机制与环境/生物效应,(2)二价铁矿物有氧条件下产生活性氧引起的氧化效应;(3)基于强化产生活性氧的地下水修复新机理与新方法。已主持国家自然科学基金(4项)等各级科研项目10余项,已在SCI源刊发表学术论文80余篇,其中第一/通讯作者50余篇,Web of Science累计他引1300余次,H指数为24(截至2017年6月)。


联系方式 yuansonghu622@163.com, 02767848629。

教育和工作经历

l 博士生导师:中国地质大学(武汉)环境地质与生物地质教育部重点实验室,2012.09

l 教授:中国地质大学(武汉)环境地质与生物地质教育部重点实验室,2011.08

l 访问学者:美国Northeastern University2011.092012.09

l 副教授:中国地质大学(武汉)环境地质与生物地质教育部重点实验室,2010.082011.07

l 副教授:华中科技大学环境科学与工程学院,2010.022010.07

l 讲师:华中科技大学环境科学与工程学院,2007.072010.01

l 博士:环境工程专业,华中科技大学环境科学与工程学院,2004.092007.06

l 硕士:环境工程专业,华中科技大学环境科学与工程学院,2001.092004.06

l 学士:应用化学专业,华中科技大学化学系,1997.092001.06

获奖情况

l 2015年“国家自然科学基金优秀青年基金”获得者

l 2015年“Excellence in Review Award for Environmental Science & Technology ES&T优秀审稿人奖)

l 2013年“教育部新世纪优秀人才支持计划”入选者

l 2013年中国地质学会“青年地质科技奖—银锤奖”

l “湖北省优秀硕士论文”指导教师(3篇)

科研项目

1. 主持:地下环境有害物质迁移转化与修复机理,国家自然科学基金优秀青年基金项目,NO. 415222082016/01–2018/12130

2. 参加(排名第四):环境水文地质,国家自然科学基金创新群体项目,NO. 415210012016/01–2021/121050

3. 参加:地下水有机污染原位化学氧化与redox调控联合修复技术研发及示范,广东省科技计划项目(技术开发及产业化类别),NO. 2016B0202400082016/01–2018/12300万(负责经费80万)

4. 主持:浅层地下水中胶体组分在扰动下对污染物迁移转化行为的影响,教育部新世纪优秀人才支持计划,NO. NCET-13-10142014/01–2016/1250

5. 主持:矿业活动引起自然水体组成变化的地球化学预测,国家自然科学基金中俄国际合作交流项目,NO. 214111301842014/01–2015/129

6. 主持:浅层地下水redox升高时的铁( = 2 \* ROMAN II)演化历程及其对氯代烃的非生物转化机理,教育部高等学校博士学科点专项科研基金(博导类),NO.201301451100082014/01–2016/1212

7. 主持:双阳极调控负载型铁(氢)氧化物的原位生长及其对地下水中砷的去除机理,国家自然科学基金面上项目,NO. 21277129 2013–201682

8. 主持Pd催化阴极H2的新型e-PRB对氯代有机物污染地下水的加氢脱氯修复,国家自然科学基金面上项目,NO. 411722202012-2015. 71

9. 主持:江汉平原土壤地下水系统中典型污染物的生物地球化学过程和环境效应,生物地质与环境地质国家重点实验室优先主题,2013-2015. 45

10. 主持:电动力学-零价铁可渗透反应格栅联用对五氯酚污染土壤的修复,国家自然科学基金青年基金,NO.408011142009-2011. 21

近年代表性SCI论文

[1] Xie S.W., Yuan S.H.*, Liao P., Tong M., Gan Y.Q., Wang Y.X. Iron-anode enhanced sand filter for arsenic removal from tube well water. Environmental Science & Technology 2017, 51, 889-896.

[2] Zhang P., Yao W.Y., Yuan S.H.* Citrate-enhanced release of arsenic during pyrite oxidation at circumneutral conditions. Water Research 2017, 109, 245-252.

[3] Liao P., Li W.L., Wang D.J., Jiang Y., Pan C., Fortner J.D., Yuan S.H.* Effect of reduced humic acid on the transport of ferrihydrite nanoparticles under anoxic conditions. Water Research 2017, 109, 347-357.

[4] Zhu J., Zhang P., Yuan S.H.*, Liao P., Qian A., Liu X.X., Tong M., Li L.N. Production of hydroxyl radicals from oxygenation of simulated AMD due to CaCO3-induced pH increase. Water Research 2017, 111, 118-126.

[5] Liu X.X., Yuan S.H.*, Tong M., Liu D. Oxidation of trichloroethylene by the hydroxyl radicals produced from oxygenation of reduced nontronite. Water Research 2017, 113, 72-79.

[6] Cheng D., Yuan S.H.*, Liao P., Zhang P. Oxidizing impact induced by mackinawite (FeS) nanoparticles at oxic conditions due to production of hydroxyl radicals. Environmental Science & Technology 2016, 50, 11646?11653.

[7] Liao P., Yuan S.H.*, Wang D.J. Impact of redox reactions on colloid transport in saturated porous media: An example of ferrihydrite colloids transport in the presence of sulfide. Environmental Science & Technology 2016, 50, 10968?10977.

[8] Tong M., Yuan S.H.*, Ma S.C., Jin M.G., Liu D., Cheng D., Liu X.X., Gan Y.Q., Wang Y.X. Production of abundant hydroxyl radicals from oxygenation of subsurface sediments. Environmental Science & Technology 2016, 50, 214-221.

[9] Zhang P., Yuan S.H.*, Liao P. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions. Geochimica et Cosmochimica Acta 2016, 172, 444-457.

[10] Qian A., Yuan S.H.*, Zhang P., Tong M. A new mechanism in electrochemical process for arsenic oxidation: Production of H2O2 from anodic O2 reduction on the cathode under automatically developed alkaline conditions. Environmental Science & Technology 2015, 49, 5689-5696.

[11] Xie S.W., Yuan S.H.*, Liao P., Jia M.Q., Wang Y. Pd-catalytic hydrodechlorination of chlorinated hydrocarbons in groundwater using H2 produced by a dual-anode system. Water Research 2015, 86, 74-81.

[12] Tong M., Yuan S.H.*, Zhang P., Liao P., Alshawabkeh A.N., Xie X.J., Wang Y.X. Electrochemically induced oxidative precipitation of Fe(II) for As(III) oxidation and removal in groundwater. Environmental Science & Technology 2014, 48, 5145-5153.

[13] Yuan S.H.*, Liao P., Alshawabkeh A.N.* Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater. Environmental Science & Technology 2014, 48, 656-663.

[14] Qian A., Liao P., Yuan S.H.*, Luo M.S. Efficient reduction of Cr(VI) in groundwater by a hybrid electro-Pd process. Water Research 2014, 48, 326-334.

[15] Luo M.S., Yuan S.H.*, Tong M., Liao P., Xie W.J., Xu X.F., An integrated catalyst of Pd supported on magnetic Fe3O4 nanoparticles: Simultaneous production of H2O2 and Fe2+ for efficient electro-Fenton degradation of organic contaminants. Water Research 2014, 48, 190-199.

[16] Yuan S.H.*, Chen M.J., Mao X.H., Alshawabkeh A.N.* Effects of reduced sulfur compounds on Pd-catalytic hydrodechlorination of TCE in groundwater using cathodic H2 under electrochemically-induced oxidizing conditions. Environmental Science & Technology 2013, 47, 10502-10509.

[17] Liao P., Yuan S.H.*, Chen M.J., Tong M., Xie W.J., Zhang P. Regulation of electrochemically generated ferrous ions from an iron cathode for Pd-catalytic transformation of MTBE in Groundwater. Environmental Science & Technology 2013, 47, 7918-7926.

[18] Xie W.J., Yuan S.H.*, Mao X.H., Hu W., Liao P., Tong M., Alshawabkeh A.N. Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater. Water Research 2013, 47, 3573-82.

[19] Yuan S.H.*, Chen M.J., Mao X.H., Alshawabkeh A.N.* A three-electrode column for Pd-catalytic oxidation of TCE in groundwater with automatic pH-regulation and resistance to reduced sulfur compound foiling. Water Research 2013, 47, 269-278.

[20] Yuan S.H., Mao X.H., Alshawabkeh A.N. Efficient degradation of TCE in groundwater using Pd and electro-generated H2 and O2: A shift in pathway from hydrodechlorination to oxidation in the presence of ferrous ions. Environmental Science & Technology 2012, 46(6), 3398-3405.

专利申请和授权情况

1. 袁松虎,童曼,一种电化学强化砂滤罐除砷方法,发明专利,ZL201410291046.3。授权日:20150506。

2. 袁松虎,谢世伟,廖鹏,罗泽娇,一种铁阳极耦合钯催化加氢的地下水修复方法,发明专利,ZL 201410292449.x。授权日:20150505。

3. 袁松虎,钱傲,一种地下水中三价砷的电化学氧化方法,发明专利,ZL 201410169378.4。授权日:20150326。

4. 袁松虎,廖鹏,Akram N. Alshawabkeh,一种对有机污染地下水的原位修复方法,发明专利,ZL201210430378.6。授权日:20140604。

5. 袁松虎,廖鹏,一种铁阴极电芬顿地下水修复方法,发明专利,ZL201210493036.9。授权日:20140514。

6. 袁松虎,童曼,一种双阳极电絮凝除砷方法,发明专利,ZL201310285591.7。授权日:20140514。